Lecture 10

Proofs by Contradiction (contd.), Proof by Exhaustion

Examples: Proof by Contradiction

Theorem: There are infinitely many prime numbers.
Proof: For the sake of contradiction, suppose there are only finitely many primes.
Let $p_{1}, p_{2}, \ldots, p_{n}$ denote the list of all the primes in ascending order.
Consider the number $a=p_{1} \cdot p_{2} \cdot p_{3} \cdot \ldots \cdot p_{n}+1$.
Clearly, $a>p_{n}$ and thus cannot be a prime number.
Since $a>1$, there must exist a prime divisor of a, say p_{k}.
Thus, there is an integer c for which $a=c p_{k}$, which is to say

$$
p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k-1} p_{k} p_{k+1} \cdots \cdots p_{n}+1=c p_{k}
$$

Examples: Proof by Contradiction

Dividing both sides with p_{k} gives us,

$$
p_{1} \cdot p_{2} \ldots \ldots p_{k-1} p_{k+1} \ldots \ldots p_{n}+\frac{1}{p_{k}}=c
$$

So,

$$
\frac{1}{p_{k}}=c-\left(p_{1} \cdot p_{2} \ldots \ldots p_{k-1} p_{k+1} \ldots \ldots p_{n}\right)
$$

This is the q we mentioned in the outline of Proof by Contradiction.
$\neg p=$ There are finitely many primes.

The expression on the right is an integer, while the expression on the left is not an integer.
Since this is a contradiction, our assumption that there are finitely many primes is false.
Hence, there are infinitely many primes.

More on Proof by Contradiction

- Deducing p from $\neg p$ also proves p is true.

If $\neg p \Longrightarrow q_{1} \Longrightarrow q_{2} \Longrightarrow q_{3} \quad \ldots \ldots \Rightarrow q_{k}(=p)$
Then, we can say that $\neg p \rightarrow p$ is true.
If $\neg p \rightarrow p$ is true, then p is true.

- Proof by Contradiction can be applied on conditional statements as well.

Suppose we want to prove $p \rightarrow q$ true using proof by contradiction.
We start by assuming $\neg(p \rightarrow q)$ as true, which is the same as assuming both
$\neg q$ and p as true. $(\because \neg(p \rightarrow q) \equiv \neg(\neg p \vee q) \equiv p \wedge \neg q)$
Then, we try to arrive at a contradiction.

Mixed Proofs

You are free to use more than one methods of proof while proving a statement.
Here's an example.
Theorem: Every non-zero rational number can be expressed as a product to two irrational numbers.

Proof: We can reword the theorem as follows:
If r is a non-zero rational number, then r is a product of two irrational numbers.
Since r is a non-zero rational number, $r=\frac{a}{b}$, where $a \neq 0$ and $b \neq 0$ are integers.
Also, r can be written as a product of two numbers as follows:

$$
r=\sqrt{2} \cdot \frac{r}{\sqrt{2}}
$$

Mixed Proofs

We will show now that $\frac{r}{\sqrt{2}}$ is also irrational using proof by contradiction.
Suppose $\frac{r}{\sqrt{2}}$ is rational. Then, for integers c and $d \neq 0, \frac{r}{\sqrt{2}}=\frac{c}{d}$.
So,

$$
\sqrt{2}=r \frac{d}{c}=\frac{a}{b} \frac{d}{c}=\frac{a d}{b c} \longleftarrow q
$$

This means $\sqrt{2}$ is rational, which is a contradiction because we know it is irrational.
Therefore, $\frac{r}{\sqrt{2}}$ is irrational.

Proof by Exhaustion

In Proof by Exhaustion (aka Proof by Cases) mathematical statement that has to be proven is split into a finite number of cases, where each case is proved separately.

A proof by exhaustion typically contains two stages:

- A proof that the set of cases is exhaustive.

Skipped when obvious.

- A proof of each of the cases.

Proof by Exhaustion are usually avoided due to following reasons:

- They are viewed as inelegant.
- It's easy to miss out on a few cases.

Example: Proof by Exhaustion

Theorem: If an integer n is a perfect cube, then n must be either a multiple of 9,1 more than a multiple of 9 , or 1 less than a multiple of 9 .
Proof: If n is a perfect cube, then $n=k^{3}$, where k is an integer.
We will consider three cases based on the value of $k \% 3$.
Case 1: When $k \% 3=0$
If $k \% 3=0$, then $k=3 q$, for some integer q.
Then, $n=k^{3}=(3 q)^{3}=27 q^{3}$, which is a multiple of 9 .
Case 2: When $k \% 3=1$
If $k \% 3=1$, then $k=3 q+1$, for some integer q.
Then, $n=k^{3}=(3 q+1)^{3}=27 q^{3}+27 q^{2}+9 q+1=9\left(3 q^{3}+3 q^{2}+q\right)+1$, which is 1 more than a multiple of 9 .

Example: Proof by Exhaustion

Case 3: When $k \% 3=2$
If $k \% 3=2$, then $k=3 q+2$, for some integer q.
If $k=3 q+2$, then $k=3 q+3-1=3(q+1)-1=3 q^{\prime}-1$, for some integer q^{\prime}.
Then, $n=k^{3}=\left(3 q^{\prime}-1\right)^{3}=27 q^{\prime 3}-27 q^{\prime 2}+9 q^{\prime}-1=9\left(3 q^{\prime 3}-3 q^{\prime 2}+q^{\prime}\right)-1$,
which is 1 less than a multiple of 9 .

