Lecture 10

Proofs by Contradiction (contd.), Proof by Exhaustion

Examples: Proof by Contradiction

Theorem: There are infinitely many prime numbers.

Proof: For the sake of contradiction, suppose there are only finitely many primes.

Let $p_1, p_2, ..., p_n$ denote the list of all the primes in ascending order.

Consider the number $a = p_1 . p_2 . p_3 p_n + 1$.

Clearly, $a > p_n$ and thus cannot be a prime number.

Since a > 1, there must exist a prime divisor of a, say p_k .

Thus, there is an integer c for which $a=cp_k$, which is to say

$$p_1 . p_2 p_{k-1} p_k p_{k+1} p_n + 1 = c p_k$$

• • •

Examples: Proof by Contradiction

Dividing both sides with p_k gives us,

$$p_1 . p_2 p_{k-1} p_{k+1} p_n + \frac{1}{p_k} = c$$

So,

$$\frac{1}{p_k} = c - (p_1 . p_2 p_{k-1} p_{k+1} p_n).$$

This is the q we mentioned in the outline of Proof by Contradiction.

 $\neg p = There are finitely many primes.$

The expression on the right is an integer, while the expression on the left is not an integer.

Since this is a contradiction, our assumption that there are finitely many primes is false.

Hence, there are infinitely many primes.

More on Proof by Contradiction

• Deducing p from $\neg p$ also proves p is true.

If
$$\neg p \implies q_1 \implies q_2 \implies q_3 \quad \dots \quad \implies q_k \ (=p)$$

Then, we can say that $\neg p \rightarrow p$ is true.

If $\neg p \rightarrow p$ is true, then p is true.

Proof by Contradiction can be applied on conditional statements as well.

Suppose we want to prove $p \rightarrow q$ true using proof by contradiction.

We start by assuming $\neg(p \to q)$ as true, which is the same as assuming both

 $\neg q$ and p as true. (: $\neg (p \rightarrow q) \equiv \neg (\neg p \lor q) \equiv p \land \neg q$)

Then, we try to arrive at a contradiction.

Mixed Proofs

You are free to use more than one methods of proof while proving a statement.

Here's an example.

Theorem: Every non-zero rational number can be expressed as a product to two irrational numbers.

Proof: We can reword the theorem as follows:

If r is a non-zero rational number, then r is a product of two irrational numbers.

Since r is a non-zero rational number, $r = \frac{a}{b}$, where $a \neq 0$ and $b \neq 0$ are integers.

Also, r can be written as a product of two numbers as follows:

$$r = \sqrt{2} \cdot \frac{r}{\sqrt{2}}$$

Mixed Proofs

We will show now that $\frac{r}{\sqrt{2}}$ is also irrational using proof by contradiction.

Suppose
$$\frac{r}{\sqrt{2}}$$
 is rational. Then, for integers c and $d \neq 0$, $\frac{r}{\sqrt{2}} = \frac{c}{d}$.

So,

$$\sqrt{2} = r\frac{d}{c} = \frac{a}{b}\frac{d}{c} = \frac{ad}{bc}$$

This means $\sqrt{2}$ is rational, which is a contradiction because we know it is irrational.

Therefore, $\frac{r}{\sqrt{2}}$ is irrational.

Proof by Exhaustion

In **Proof by Exhaustion (aka Proof by Cases)** mathematical statement that has to be proven is split into a finite number of cases, where each case is proved separately.

A proof by exhaustion typically contains two stages:

- A proof of each of the cases.

Proof by Exhaustion are usually avoided due to following reasons:

- They are viewed as inelegant.
- It's easy to miss out on a few cases.

Example: Proof by Exhaustion

Theorem: If an integer n is a perfect cube, then n must be either a multiple of 9, 1 more than a multiple of 9, or 1 less than a multiple of 9.

Proof: If n is a perfect cube, then $n = k^3$, where k is an integer.

We will consider three cases based on the value of k % 3.

Case 1: When k % 3 = 0

If k % 3 = 0, then k = 3q, for some integer q.

Then, $n = k^3 = (3q)^3 = 27q^3$, which is a multiple of 9.

Case 2: When k % 3 = 1

If k % 3 = 1, then k = 3q + 1, for some integer q.

Then, $n = k^3 = (3q + 1)^3 = 27q^3 + 27q^2 + 9q + 1 = 9(3q^3 + 3q^2 + q) + 1$,

which is 1 more than a multiple of 9.

Example: Proof by Exhaustion

Case 3: When k % 3 = 2

If k % 3 = 2, then k = 3q + 2, for some integer q.

If k = 3q + 2, then k = 3q + 3 - 1 = 3(q + 1) - 1 = 3q' - 1, for some integer q'.

Then, $n = k^3 = (3q' - 1)^3 = 27q'^3 - 27q'^2 + 9q' - 1 = 9(3q'^3 - 3q'^2 + q') - 1$, which is 1 less than a multiple of 9.